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THE present paper is divided into two sections. The object of Section I. is to obtain
an expression for an integral more general than, but intimately connected with, that
occurring in ABBL'S theorem. The latter, as enunciated by Professor RowE in his
memoir in the Phil. Trans., 1881, is as follows :—If

x(@, y)=0
be a rational algebraical equation between x and v, then an expression can always be
found for
s S Udz:
F@ g

where f(x) is a function of « only, U a rational algebraical integral function of z and ,
and the upper limits of the series of integrals are the roots of the eliminant with
regard to y of x(x, ¥)=0 and a function f(x, y).
In the case here considered two equations respectively of the degrees m and =

between three variables

F.(x, y, 2)=0

F.(x, vy, 2)=0
are given (these alone being considered, as subsequent generalisation to the case of
equations between 7 dependent variables and one independent variable is obvious);
and an expression is obtained for

Udax
Y, %

the upper limits of the integrals being given by the roots of the equation arrived at
by eliminating ¥ and z between F,, F, and an arbitrary equation

Fy(x, y, 2)=0

or, what is the same thing, by the co-ordinates @ of the points of intersection of the

three surfaces represented by F,, F,, F,.
2T 2
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Some preliminary considerations (in connexion with §§ 92 sqq. of Sarmon’s ¢ Higher
Algebra’) are adduced in reference to the eliminants of the three equations in each of
the variables ; thus if X be the equation in z obtained by eliminating % and z, it is

expressed in the form :
X=B,F,+B,F,+B,F,

which afterwards proves useful. Then the ordinary case (above referred to) of ABEL’S
theorem is treated on the lines laid down in CrLEBscH and GorpAN's ¢ Treatise on the
Abelian Functions;’ and under the guidance of this the more general form is investi-

gated with the result
. Udz 1 U
_—6 Yy F} C
ES s (=T a2 { e} +
-4

)

0 being the symbol introduced by BooLx.

The remainder of this section is occupied with the discussion of two examples of this
theorem. In the first, expressions are obtained for E(u; +u,+u,) and II(u,+uy+u,),
E and II being the second and third elliptic integrals; and in the second example
E(u,4uy+ . . . 4uy) is considered.

In Section II. the addition-theorem for the functions presented in WEIERSTRASY'S
memoir (‘ Crelle,” t. lii., (1856), p. 285) is investigated. [It may be pointed out that
the fundamental equations occur as natural examples of the more general form of
ApEL’s theorem proved in Section I.; but the equations which are obtained almost
immediately are identical with those used by WEIERSTRASS, and so this case does not
belong distinctively to the form of ABEL’s theorem for the curve of double curvature.]
For the purpose of the section use is made of the *integral-function,” the partial
differential coefficients of which with respect to the amplitudes give the squares of the
Abelian functions. The theory is worked out at some length, and the necessary
formulze are deduced from the fundamental equations in a manner somewhat different
from that of WEIERSTRASS. From the form first obtained for the sum of three
integral-functions an important theorem is deduced in § 21, and a verification of this
is afterwards furnished by the expansion of the two sides of the equation. It is then
applied, as already mentioned, to obtain the addition-theorem for the functions.

In §§ 25, 26 is given the discussion of a particular case of the above, viz., when the
functions are of the order 2, the fifteen functions being the quotients of all but one of
the double theta-functions by that one. This has already formed the subject of a
paper by CAYLEY in ‘ Crelle,” t. Ixxxviil. (1878), p. 74.

Secrron 1.

L. Before proceeding to the consideration of the theorem it is necessary to indicate
the form in which the eliminant of three equations in three variables (or in general
of u equations in p variables) will be used.
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If we consider two equations in two variables say

Jo =2y Fey gy + ... Fayr =0
b=Xo+ X+ X+ .. . +X,y"=0
and if X be the eliminant of f, and ¢, with regard to y, then we have

X=Af+Bé.

Now X being of degree mn in x, A must be of degree mn—n and B of mn—m;
while it is sufficient that the highest power of ¥ in A be the (m—1)% and in B the
(n—1)%  Write then

A=A +Ay+Apy+ ... +A, !
B=B,+By+By*+ ... +B,_y .

Substitute in X ; since X is explicitly free from y all the coefficients of powers of y
in the result must be zero. This then gives

Agr, A7, +B,X,+B,X, =0
Ay A+ Ay, + B X,+ B, X,+ B,X, =0
Agrgt A g+ Ay, + Ay, +B,X;4+ B X,+ B, X+ ByX, =0

m-+n—1 equations to determine the ratios of the m-+n quantities A, B. Let

E=|1 vy ... y»l 0 0 0
ey oxy 0L 0 X, X, c
Ty X Xy .. 0 X, X, X,...
F={0 0 0 1y 9. Yyt
X, ®, O X, X, 0..
Xy, X, X X, X, X;.

Then A, bears to the minor of %" in E the same ratio as B, bears to the minor of
o in F: thus
A B
| R
But the diagonal term in E is
a1 X,
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and E is therefore of the degree n(m—1), 7.e., of the same degree in X as A; it is

obviously of the same degree in % ; hence %is merely an arithmetical constant, and

we may write

A=E, B=F.

2. When we come to-apply this method to the formation of the eliminant with
regard to y and z of three equations ¥, F,, Fyin three variables x, v, z the result,
though of similar form, viz. :

A i i AsoFot ATy,

can in general be obtained' neither so directly nor without the help of the considera-
tions in Sarmox’s ¢ Higher Algebra,’ §§ 92, sgg. If the three equations be each of the
degree 2, the method will apply exactly as in the preceding paragraph and we obtain

X= Au By AL Byt ALy

Ax,r =0y, -+ Bx,rw + Yo, Y 5

but if the equations be not of this degree, then the following is our rule. Let
Iy, Ty, Is be of the degrees m, n, p respectively : then we form all possible equations,

which the variables satisfy, of degree not higher than m+n+4p—2: thus we multiply
F, by

where

s e I e R R Y 2 M
and so on ; and so we obtain
$(n+p—1)(n4p)+3(p+m—1)(p+m)+i(m+n)(m+n—1)
equations from which to eliminate
$(m4n+p—1)(m-+n+p)

quantities. But these equations are not all independent, being connected by a
number of identities of the form

2y’ B Fo=2y'F,F,
(where r4s<p—2), of which there are Lp(p—1); there are {n(n—1) of the form

7y F.¥, =2y F. F, where v/ +¢<n—2
and tm(m—1)
7'y ' Fy Fy=2"y"F.F, where v’/+4s"<m—2,

and thus we have the proper number of equations. To find the eliminant X we write
down the coefficients (which are, of course, functions of ) in the {(n+p—1)(n+p)+ ...
equations ; and reduce them to the form of a determinant by adding the coefficients in
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the ip(p—1)+ ... equations; then the eliminant is the quotient of the determinant
formed by any

Y-t n-Hp—1)m-+n-+p)

rows of the set first written down by the determmant formed from the second set
after the elision of these rows.

3. To show how this can be brought into the desired form the easiest plan will be
to consider an example. Let

Fi=Ay+B:+4C
F,=A"y*+Fy2+4+B22+Ey4+D24C"
F,=A"y+D"y%+ Ky + B2+ F 4+ G yz+J"22 -+ H'y + K24 C”

where the coefficient of the highest powers of zand y are constants and those of
other powers are functions of x such as make the order of the highest expression in
the term of the same order as the equation ; thus, for instance

F'=futf"
H'=ha*+Kao+}’

and so on. Then we have, since m=1, n=2, p=3

gyt oyt g oy 2t 3 gz oy Ay oyz 22y oz 1 [yF T fF B Fo ) TR,
»F, A B C A’ A"
y* I A B C I A’ D
y2*F, A B C B ) B
ER A B C B’ B
¥°Fy A B C B AP
yzFl A B D.’ E' I(’U Gll
22F; A B C 0 B’ J"
yFy A B C Cl B "
2F A C ) D’ K"
i B C ' (0 (o
y¥?F, A F B E D ¢ A
yzF, A" ¥ B E c¢ B A
22K, A" B B D C B
yFy A F B ¥ D C A
2K, A F B B D c B
¥, AT B E D C C
yF All DII F]I’ BI! FI/ GH J'” HI! KII C'l A
ng All DU EH BH FII GH .]'H H” K!I CN B
F\3 B A” DI’ EVI BII FI' GII ']'N HII KII (7” C ]

To find the eliminant we choose any 15 rows (leaving out say the y°F), y2F,, 2F,,
yF,) and form a determinant, and then divide by
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| o0 AT |=w
D E ¥ G
0o C B o
;OOOA

(As the object is to illustrate the general case and not merely to get the result in
this particular case we have not selected those rows which leave the denominator in
the simplest form.) In the determinant of 15% constituents multiply each column by
the quantity which stands at the head of it, add the results horizontally along all the
rows, and replace the constituents of the last column by these new constituents which
are, in order,

YF, y%F,, y2°F,, 22, 2F,, yF,, F,, F,, v*F,, y2F,, 2°F,, yFy, Ty, 2F,, Fy,
so that if we expand we have the numerator of our eliminant in the form
A B 4A Fo+ AT,

where the A’s are determinants differing from the initial determinants in the last
column alone ; A’,, has for its constituents there the coefficients of F; so long as F,
occurs in the later form and then zeros; A’,, those of F, where it occurs and else-
where zeros; A’, those of F; where it occurs and elsewhere zeros. Moreover, we
know that our eliminant is an integral function of x not extending in an infinite
series; hence each of the coeflicients A’ must be divisible by w. If not, one of the
F’s (say F,) must be so divisible ; since w is a function of x only it follows that, when
u=0, ;=0 whatever z and y may be. We shall assume that such factors are removed
before the investigation begins as they are useless for the purposes for which the
functions are required ; and hence we obtain our eliminant in the form

X=A,,F,4+A,,F,+A,F,

Similar remarks of course apply to Y and Z, the eliminants with regard to z and z,
y and «.
4. We may also obtain the result as follows :

Between ¥, =0, F,=0 eliminate z and denote the eliminant by X, ; then, as we have
already seen, X, can be expressed in the form

Xy =N+ ¥
Between F,=0, F,=0 eliminate z and denote this eliminant by X’,; then
X,y =u. K+ I‘LWFP'

Now X,, X', are both functions of x and y; eliminating y between them and
denoting the eliminant by X we have
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X = PeXytp Xy
=A,F,+AF,+AF,
of the same form as before.

This method of expressing an eliminant obviously admits of generalisation to the
case of 7 equations in 7 variables,

5. The preceding method enables us to obtain the eliminants of the equations with
regard to the different variables in a particular form which is useful in the proof of the
general theorem in §7; but when the object is merely to obtain the equation giving
the roots , which are to form the upper limits of our integrals we should arrive at
the result more easily as follows.

Obviously

w=mn

X="T"F,(@ .. %)
m=1

where v,, z, constitute one of the mn pairs of roots of the equations

regarded as giving ¥y, z in terms of @; and the product is taken over all these pairs.
Now the coefficients on the right-hand side will be symmetric functions of y and z, and
these can be evaluated (by the method given in Sarmon’s ¢ Higher Algebra,’§ 74) in
terms of «; and there will be obtained the required equation in .

AsrL’s Theorem.

6. Let
x@y=0 . . . . 0L )

be an equation of the degree n which gives ¥ in terms of z; and let

O, y)

denote a function of x of degree m—reducible to degree n—1 at most in by means
of (i)—the coefficients of ¥ in which are functions of « and contain any number of
arbitrary constants. Treating x=0, =0 as two equations to determine the values of
the variables, these arbitrary constants will enter into the expressions for the values
of x, and will therefore vary when the latter vary. Let such a variation take place,
so that

3% o8 . -
'gcdw+g§dy+80'—=0 Co e (1)

8 operating only on the constants in §. Moreover we have from (i)
MDCCCLXXXITIT. 27U
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X Gt X =
o olx—l—by dy=0

or writing »
d. d
dw=s- = Si/
X _%X
dy o

the equation (ii) becomes

,(dx 00 80 8y _
—dw <b[c Y by>+89“"0

or
R
dr= J(x, 0)
and therefore
SUdw=3—2—80. . . « . . . . . . (i)

I(x 0)

where U is any rational function of « and y, and the summation is taken over all the
roots x, of the equation obtained by the elimination of y between x and 6.

Let X, Y respectively denote the eliminants of ¥, ¢ with regard to ¥y, #; then we
can express X, Y in the form

X=Ax+B¢ .
o : coe o (1)
Y=Cx+D¢

and we write
A=AD-—-BC.

Now whatever the function U may be it can be written in the form

"l‘ .
for it must be expressible as
AC

that is,

p=n
Jolz, 1) Hzf W@y Yy
P

n
LWACYN
=1

which by means of the equation x=0 s at once reduced to the above form; thus

T T 8
B )

S@) o 7 f(®) I(x, 0)
oy
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Each of the equations X=0, Y=0 has mn roots; if x=ux,, y=1y, be a pair which
make x and @ both vanish, these may be called congruous; but if z=zx,, y=y, do
not make x and 6 both vanish then for these

A=0,

while for congruous values A does not vanish,
Moreover, for congruous values of = and y we at once have

dXdY = o
2 ay =2 0)

the congruous values being substituted for the variables, so that

1 A
J(x, 6) dX dY
dx dy

Now in (v) the summation is for all the a’s and for one of the y’s, say ¥, ., which
may be regarded in the following way. When the equation

x(x, y)=0

is solved for 7 in terms of w, there will be n roots; take one of these and denote it
by 7,, which is therefore a function of . Substitute in turn @, @,, ..., Zum; then we
obtain for 7, a series of values, but all derived from the single root of x. Thus

T 89 . T, A,
Y Tl O s e X Y
dz dy
since we have x=x,, y=y, , (v=1, 2, . . . , mn) as the mn congruous roots. Moreover
for roots other than these
A=0

so that we may add on a number of vanishing terms to the right-hand side, and the
removal of the restriction now gives

T, A

= Wi
dz, dy,

(where p'=1,p or 2,u or . .. or n,u).

Moreover from (iv)
Axy=DX—-BY
and therefore

0 dY
By = =B g
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the term corresponding to a differential of X disappearing and the others vanishing in
virtue of the values assigned to the two variables; thus our expression becomes

T, B
- Ly o 8 “,.bx Et_é
O ity

. 1. . V. . .
But the coefficient of ~in the expansion of 5 0 descending powers of @ is

V.
G —ux

(Z -xt) CZAQ—G:

-

L

=3

|

ad
dx,

P

|

and therefore the foregoing

=—CO 5L 59 Bu
7 X—a oy

the = referring to the n values of y obtained from the equation (i), and the expansion
being in the factors of X alone. But since we are substituting for y from (i) we have
x always zero in this, and therefore

X=B,0.
Taking now into account the expansion for the factor xia» we have finally
T 86 T 801 T 80
ek TS Pl sl
o L L,

the summation in each of the terms on the right-hand side being for the n values of .
Now on the introduction of Boorr’s symbol ® (¢f. Phil. Trans., 1857, p. 751), the
right-hand side is merely the definition of
1 T o8
®L_J%&b‘

oy

Let z=a be a root of f(x)=0, and in (v) expand [ f(x)]™! in a series of partial
fractions corresponding to the roots; then expressions of the form T &6 are
z—a J(y, 6)

obtained. Moreover, from the nature of the preceding fractions and the definition
of the symbol ® in connexion with them, it is obviously a distributive symbol; thus

we have
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T dz T Y

) by ) Ty, 6)
oy
T 88
[f(@)}sz )
oy

where the summation on the left-hand side is over the roots of the equation

X=0
while on the right-hand side it is over the n roots y of the equation x(x, )=0. The
variables on the right-hand side being the arbitrary constants in @ which occur only in

the factor %q, we may integrate, and we have as the result

P 2y T dﬂ;
3 ] g +C
2T o) 2 {5 a0+
oy Lby J
agreeing with the form given in Professor RowE’s memoir (Phil. Trans. 1881, p. 721).
7. In the generalisation of the theorem we shall consider only two dependent
variables ¥, z and one independent variable «; it will be seen that the work would

apply, mutatis mutandis, to k—1 dependent variables and one independent. Let the
variables  and 2z be given as functions of x by the equations

F. (x, v, 2)=0
F, (z, y, 2)=0
of the degrees m and n respectively. Let

F, (9, %)

be a function of x,  and # the coeflicients of y and z in which are functions of z with
any number of arbitrary constants; so that as in the simple case when 2, x and y
vary the constants also vary. Using the same notation as before we have

bl‘“md + blzﬂld + hﬂd —0
oF, bF,L "
S;d + ol —|— d =0.
Therefore
dz da dy
=clw

o(F,, F,) b(Fm, ¥.) b(Fm, ¥,)
Mo, p) Sy 8w

and



334 PROFESSOR A. R. FORSYTH ON

oF, ;o 0, | oF, _
o dz-- v dx+ oy dy+38F,=0

so that
¥, ¥, Fy _

dw.J< P >+8F,,_0

and therefore
T .
— 3T dw= ——r—‘“““SF, e e e e e e ).
2J Fo, o Fp\ 777 (i
&, Y, %

Let Z, X and Y be the eliminants of I, F, and I, respectively with regard to = and ,
y and z, z and «; then as explained in § 3 we may write

X - AmFm+ AnFn + A ]JFﬂ
lf - BmFm + Bn F%+ BIJFP
Z = C mFm"I_ On Fﬂ + OpF]Jv

Each of the equations z=0, =0, y=0, has mnp solutions; let those values
(mnp in all) which make F,, F, and F, vanish simultaneously be called congruous,

Write

Cm C)L Cp !
so that for non-congruous values A is zero.
Now whatever be the value of T it can be put into the form

Wz, y, 2)
D(z, y, 2)

where ® and ¥ are rational integral algebraical functions of @, ¥ and z; and this can be

expressed as
U

J@)
where U is an integral function of , ¥ and z and f{x) is a function of x only. For it is

=

\I’(:U, Y zl) “132 (I)(,z, Yo zu)

p=ma

1T B(z, 4, 2,)
p=1

where v, 2z, are a pair of values of 7 and 2z which satisfy the equations
wy T y

]ﬂ‘m = 0, ;Fuz 0.
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Now the denominator will consist of symmetric functions of the 3’s and z’s, the
coefficients in its different terms involving @. These can be expressed in terms of a
alone,* while the new term in the numerator can be expressed in terms of symmetric
functions of the %’s and #’s and of 7, and z,, and thus T is reduced to the form

U
J(@)
and therefore
U SF, .
"“Ewa-— f() <m’ ;:Ip) . . . N . . . ' (1]).
2,1, 2

Let 2=a be any root of f{w)=0; then, as before, we consider

U
-3

X—a

dw,
that is,
U s,

t—a J°

the summation being for the mnp values of z; and a definite value of y and one of 2z
are to be substituted in terms of x before the summation is effected.

Having these definite values of y and z (obtained from F,=0, F,=0) if in them we
substitute in turn the mnp values of x, we shall have mnp congruous values and
therefore all the congruous values. For these, as we easily see,

7 1 A
1(Fus B, F, =dz dx ay
. ' z, Y, 2 ) dz dx du
and therefore
U « A '
_23__— Sde/ dx dY . . . . s ' . (1“)

de s dy

the summation on each side being the same. But for all values not included in this
summation we have A=0, and therefore the restrictions on the right-hand side may be
removed without altering its value, and we shall consider the summation to extend
over all the roots of F,=0, F,=0 considered as equations in 4 and z and over all the
roots .
Let & denote the minor of A, B8 that of B, y that of C (in each case Wlth the same

suffix) in A. Then we have

o, X +BmY-I- ynlo=AF,,

0, X+B.Y+v.Z=AF,

a,X+B,Y+v,Z=AF,.

* Of. Satmon’s ¢ Higher Algebra,” § 74.
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Differentiating the first two of these with respect to y and z separately and then
inserting the values of @, ¥ and z as they now occur on the right-hand side of (iii)
we have

oF,,
B i =%y
d_z — A?El"
Yrar T %
_dY oF,
Bn—@ =A b?/
7 o,
e YN

Vg, T2
and therefore

2O(Fu, Fa) _ ay dz.
5y, %) (Bm)’n Bn’)’m) (ZI/ s
dY dZ
=44 dy dz

by a known theorem in determinants ; thus (iii) becomes

1
__2__5“,_2—8 » dX b(l?m,-]j:n_)

Now expanding in partial fractions we have

and therefore the right-hand side becomes

~ U 8, A,
03;2 w—a O(F,, T,) | X i
. Oy, 7))

considered as expanded for the factors of X alone or, including in the expansion the

. . 1 ..
term arising from — it 18 equal to
—-—a

LT U SE, AT T USE, A,
C.'I? 2 £L=—a b(Fm, I‘n) X —_2 b<F"t’ 13”) X
. oy, x) ~ ) L —

wherein the 3 implies summation for all values of y and z in terms of x derived
from the equations F,=0 and F,==0. Since these values are to be substituted we
have
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X= Amlj‘m"l_ A‘ILFM -+ A])Fp
’ ="A'I}F‘p

and therefore substituting this in the above which will replace the right-hand side of
(iii) and inserting the value of dw the equation becomes

U (ZJ,

2 J<1m, 1>
hr

— 1~ U 53_}“;

s(Ea T,
_ 9,2 -

U oS,
=el.) , (BT 5 |

Y

U 1 8K,

PL—o :]-—<Fm, Fn) —1‘;;
- Y 2 -

L

L=a.

by the use of BooLE'S symbol @ as before. The summation on the left-hand side is of
course over the mnp roots @ ; on the right-hand side it is over the mn roots y and z in
terms of x of the equations F,,=0and F,=0. 'We may obviously integrate as before ;
and using the distributive property of ® we ohtain as our result

u=nmp 2, {J dic w=mn U 3 .
2 ‘( f (.,(:) (Fm; ¥, j C ® [f(a,)] % { (Fm, ,L> log Fp!} e (IV).
Y% Lo\ e J

8. The general theorem will proceed on lines not widely different from the above,
and may be enunciated as follows. Let

I-‘*l (.1?1, Loy v« v, 90,):0
]:‘12 ('%l’ Q:z, ey wr>=0

PRI

F"-—-—-l(wh Loy v v oy x?‘) 0

be #—1 equations, of degrees m,, m,, ..., in,_; respectively, giving @, ..., @, in

terms of x,; and let
.
Folay, as, ..., @)

be a function of these dependent variables, the coefficients of which are functions of x,
containing any number of arbitrary constants. Form the eliminant I of all the F’s
so that we shall obtain the set of roots 2, by equating E to zero ; and denote by U any
algebraical rational integral function of @, @y, . . . @. Then

I
|
Xgy Ly s Loy Ly v v 5 iy J

U dic,y 1 . U log F, b
N N N =t . E A, A Y :‘ i
EJ’ JS(@) J<J_’_11 Iy, :,_'._:J,¥6—1> [ﬂé’h)] 1 <1 L 1“” LI e If 1> A

MDCCCLXXXILL, 2 x
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the summation on the left-hand side being taken over all the roots of the equation
E=0, which are assumed as the upper limits of the integrals, while on the right-hand
side the summation is over all the roots of F,=0, Fy=0,. .., F,_;=0 considered as
r—1 simultaneous equations giving @,. ¥, . . . , @, in terms of x,.

9. Returning now to (iv) the conditions that the right-hand side should reduce to
a constant are :—-

10: That Hx)=1, or be a factor of U;

and 2° : C;S% log =0

which will be satisfied by
LU
(/! ‘jf.: .

Now J is of the order m-+n—2 in @, and therefore the order of U may not be
greater than m+n—4. In this case the number of terms in it will be

m+n—1lm+n—2m+n—3

1.2.3

e
But if the integrals J’%dac be formed they are not all independent for

Vul'{‘ .

J’ ‘j‘*dﬂc =0
Vil

(47— de=0

where V,, and V, are arbitrary functions of the orders m—4 and n—4 respectively,
and contain ,
m—1m—2.m—3 n—ln—2.n—3

1.2.3 and 1.2.3

terms. Hence the number of independent integrals in the case when the right-hand
side reduces to a constant or to zero is

m+n—1m+n—=2.m+n—3 m—1lm—2.m—3 n—Iln—2n—3 ,
— - =dmn(m-41—:
123 123 123 smn(mtn—d)=+1

This assumes that the surfaces F,, and F, are the most general of the degrees
mn and n respectively and so possess no special singularities.

10. ABEL'S theorem in the more simple case applies to the intersection of plane
curves. There is a fixed curve given by |

x(e, y)=0
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and integrals connected with this curve are taken, the upper limits assigned being the
abscissee of its points of intersection with another curve, the equation to which

0(x, 17)=0

contains a number of variable parameters and therefore represents a variable curve.
But the more general form of the theorem extends the application to curves in
space. We take the curve which is the intersection of two surfaces

(and which will, as a rule, be a tortuous curve), and forming the corresponding
integrals we assign as the upper limits of these the ordinates « of the points of inter-
section of this tortuous curve with a surface the equation to which

F,(x, y, 2)=0

containing a number of variable parameters represents a variable surface.

The discussion of this geometrical interpretation and of the deductions to which it
leads has been carried out in a memoir by CresscH (‘ Crelle,’ t. Ixiii., p. 189, 1863),
wherein he proceeds from the theorems which are the forms of (iv) and (v) when the
right-hand sides are zero. Example I. which follows was suggested by an analogous
geometrical illustration which Professor CAVLEY gave in one of his lectures at
Cambridge in the Michaelmas Term, 1881, wherein he pointed out how to obtain
sn(u+wv+4w) from the analytical expression for the co-planarity of the four points of
intersection of an arbitrary plane (corresponding to F,=0) with a fixed tortuous curve
in space which was the intersection of a circular cylinder and an elliptic cylinder
respectively corresponding to F,,=0 and F,=0.

We now proceed to consider two examples of (iv).

11. Fxample I.

Let I, =yf—(1—a%)=0

¥,=2—(1—-FP¥)=0
F,=Ax+By4+C:—1.

The eliminant X is obviously
X=IT{Ax—14B(1 —a*): £ C(1 —A*)}}

Il denoting the product of the four expressions which the above includes owing to the
two double signs. It is evidently of the fourth degree in x; let the roots be x,, a,
xg x,. As there are three arbitrary constants there will be one relation between
these four roots, and this can be exhibited in the form

2 x 2
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x oy, 7 1 |=0.
Ty Yo 2 |
wg o Yy 7y |

Ty Yy 2z 1

If we choose A=0 and one of the two, B and C, to be unity and the other zero,

X=0 reduces to
at=0

and we may therefore take zero as the lower limits of all our integrals.
Let
7=+ (1—a%
2=+ (1 —Fa?)?

then 4y, are the roots of F,, 42, those of I',, We have
J =4y, =4{1—2a%1—F%?)}

and therefore by our formula (iv)

pw=4ray, Ude 1 ) U 1 \1
51.( o Fey/ (L) (L =k [}@] = {7/ log (1= Ae—By—C2) }

in which the S on the right-hand side implies summation for the expressions cbtained
by the substitutions

y= y, and 2=z,
Y=o FEE,
Y= My, B R
Y==1 5 =i

(i) Let f(x) =1, U=1; then the right-hand side vanishes and we have
w1, 4wy -1, =0
where

aE== SN

Thus the preceding determinantal relation will give sn(u,+w,~+1u,), which is —z,,
in terms of the elliptic functions of n,, u,, ug
(i) Let f(x) =1, U=22=1~}%"; then we have

T () T(rg) + Lo (1) + B 1))
=—C 2{;7 log (1 --‘Aoc—-By—Cz)}

N Cif [?/1 fog <1 — Az —Cy + By, +3/1 tog {1 ke Cay—=By/ |
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Expanding the logarithms on the right-hand side the n'" term gives

B2n ~1,, 2n—2 B"nl -2
§ Cl rzl /l/ l 1y -
zn = (1 Az—Cz)» 1~ (1= Afr+( )l

- 9BEn—1 1S 9u—3 Z](] —Ax+ 021)9"'1 —z‘(l .__A%._Cz] )211—1
-1, I {(1—Ax)>— (2} -1
—

Cl | (T =211 —F%?)
|

I)Zn IC
- )n 1

92 i
{(972—1)(1 - Az)¥- 2-i- 1217:7 2n (1 — Ap)yP=1(? (1 12y + } (

( A2 +7 22 ),.n-LLAn -2 { 1—

2A 1 2n—1 5
AR

(=B [ { Ly 2em=DAL }

T (2n—1)(A + POy AHIACR o

In=1.2 —
{(Zn_1)A2n—2_(2n—1)(2n— JAm=s L _jeC? ( LIRS gt
‘)w——] Zn—

Q=5 =
1.2 5 A :2) }
(— 1)k B

=<zn_1><A2+z~,acﬂ>%-l["(2”"1>{(2"“2)A2”=3 e 1 R S }

1.2.3

—1.A 04— ] 2n—1.27—2.2n— e
‘i* {(_77—])A" 2 k?(‘& 193 ,A.2 4'+

—1)4j2B*1C (A +7kC)? — (A —4%C)™ . . . . —
= (A3+12202)‘~’n (Bt )91.]’((\ *0) after a slight reduction and writing i=,/—1

_(=1)r2kh 1 1
=y (A—dkCy ™ (A +ikCy |

Hence the whole coefficient as derived from all the terms in the expansion is

=7 [ ([’\'.—"L']CC)Q’%_(A_Q-]UC)@ RN +(A+%AC)E—(A+LLC)A4+ ]

_ % B B
= B (A—ikC) ™ B+ (A 4 44C)°
RIPABC
(A2 4 B2 —[2C3) 4 4I2AC?

and this is the value of

E(u) +E () + E(ug) = E(ue, 411,410,
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Writing s, ¢, d respectively for snw, cnu, dnu, the values of A, B and C are given
by the equations
As+Be+Cd =1
As,+Bey+Cdy=1
As,+Be,+Cdy=1

or writing

Cyly—cydy+ .. . =0
dosg—dss,+ . .. =«
$.Cy—85Cy + ... =3
f $ ¢ d, }:A
i Sy ¢y dy
s o dy |
we have .
AA=o AB=« AC=3]
and then

E(2)) 4+ E(uy) + E(ug) — E(u, -y 4-uy)

_ 8kPoKkdA ‘
= T (P A RO 4 AR

As a verification of our formula assume

U =1y =1y
so that
X =Ty = 1y
Then since the equation

As+Be+Cd=1
has three equal roots, the values of A, B and C for our case will obviously be given by
As+Be, +Cd, =1

A —BY (B2 =0
¢ d,
1 L1
B(;% +Ch—==

s’

for if we write 3,4+ ¢ for s, in the first, the coefficient of & must vanish, which condition

gives the second equation; and similarly for the third. These last two equations
give

A B _C

MR 3T =R AP *
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and substituting in the first we find

1
=10

(Y

From these we have at once

g(A-z'{-BQ-—kQC'Z) =k%"*s—d k%5 (dropping subscripts)
= — (1 — 8k%si4 2/s)
AC=ga,
Hence
(A B RO AP AN = (1 — 354 213 RS — )?
=1 — G A (k2 k)0 — 3425

and we therefore have to verify that

. ) 842333
SE(u) —E(«g u) =i 6% + 4 (K* + k)8 __3]0488‘,

Now the ordinary addition formula for E is

E(u)+E(v) — E(u+v)=/K*snusnvsn(u+v)

so that
E(u) +E(2u)— E(3u)=Fsnusn2usn3u

2E(u)—E(2u) =k%sn’usn2u
and hence . ,
3E (u) — E(3u) =k*snusn2u(snu-+sndu).
But
35— (4 +447)s® + 6435 —Iets?
1 —6k%s*+ 4(F* + k)s8 — 3kt

sn3u=—

or writing D for the denominator
D(snu~+sn8u)=4s{ 1 —(14k*)s*+ (k4 k)s*—k*s®}
= Ls(1 — k%) (1 —s*) (1 —£%?)
=4s(1 — k">

Moreover
) Dsed
sh2u= g
80 that
8]2 3 3 l:%
SE(n)—E(3u) =" "

D

verifying the formula as required.
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(iiL) In a similar way if we write

71 da
I, (=) o/ (=) (L)

(A, w)=

(so that U=1, f{x)=1—A") we shall obtain

TN, w))FTI(N, 2,) 4 TL(N, ws)+TI(N, )
A

= T o /(LN (=)

loor [{(A— N2+ (By/ T=A+Cy /I N2 H{(A+ )2+ (By/ TN —C /B =)}
{(A4N?+ B/ T2+ Cy/I2 =M H{(A—N)P 4 (By/1 =22 = Cy/ =A%)}

the values of A, B, C being those which occur in the general case in (iL.).

Let A=Fksna so as to introduce the third elliptic integral in the form used by
Jacopr; then
ST,

I\, w)=u+ :

cnadna

H(u, )

A

and the form of the theorem is now obviously as follows :—

H(uy, @)+ T(uy, o) +T1(u;, a)+T1(u,, @)
lo F@ +As)+ (Bd'+ Cho')*}{ (A~ bs')? + (Bd —Ch! )_?}'J

(A=) + (Bd + Che')?H{ (A +&s')? + (Bd' — Clee')*}

20i—

where §, ¢/, d’ stand respectively for sna, ena, dna.

12. Example 11.
Take F,, and F, as in exam‘pii@ {., but now let

F,= Agy+(Ba+C)y+ (Ha+ D)2 —Ga* — Fae—1,
in effect the most general quadric velation. The eliminant X will be of the degree 8,
and as there are seven arbitrary constants there will be only a single relation between

the roots x,, #,, . . ., x5, which can be expressed in the form

od; siep osdy st oo dpos

cgly  sgos sy 8¢ eq dy sy ]
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Moreover, if we choose
B=H=F=G=0
—A=C=D=1
the equation X=0 is of the form
=0

and we can therefore take zero for the lower limit in all our integrals.  Hence wo
shall have

wtut ... Fug=0
where
T=8snu
and the above relation will give sn(u,+ . . . +u;) in terms of the elliptic functions of
Uy - ooy Upe

Let us now find

pn=8rz, 79,3

l‘-=1 0 ].""‘%2

write

B+ C=w,; Hx+D=w; 14 Fae4GaP=w,;

then the right-hand side of the equation is

(L1 Wy — 2w, — y(Az+wy) ¢ { wy+ 2w, +y(Az—w,) -I
(A—li lo {ws —zw, +y(Az+w,) +g/ lo wy+20, —y(Az—wy) | |

z LY

On expansion, the n™ term gives

2 \:y2n—2( Aztw)?=1 gy Az_%)zn—l]
A\

2n—1 (wg—zw))*1 (wy + 2w, )% 1
2 zy2n—2 —_— one] A opet -
~on- 10}5 (wy? —2Pw,2)? 1 { Az, ) Hwg 21— (wy— Az)* N wg —2u, )71} |.

So far as the result is concerned, the expression within the inner bracket is

S wowg — KPatw, 2 (A wg +w,w,) }H{ wywg— kPaPw, —z(Aw3—F wywy) L
=22{(2n— 1)(wyws —k*®w,) 2 (Aws+ww,)+ . . . 3.
Now
w0y — Kb, = m?’[BG —KH+3(CG+BF—FD)]

=w3<)\1+£)\2> say ;

MDCCCLXXXIIT. 2Y
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Aw3+w1w2=w2[AG+BH+}G(AF+BD—|—CH):|
) 1
= M1+3‘6Mz say ;

w32—z2wl2=w4((}2+ szz){1+2FG+7€2DH 1}

G+ »

1
= x4p1< 1+ ;p2> say.

Thus the n't term gives

4(=1)y8 1
In—1 Py n—1 O <

)[(271—1)<>\ S N N ><,;,1+ W)

2n—1.2n—2.2n-3/ 2n —4

__k2 193 \)\ 272—4+ *ﬁ)\ %1—5)\ ><M13+‘_IDM12F2>+ . _]
—4(—1)"* o 2n—12n—-22n-3, , _
=“‘“;1‘2T—1—_Pz{(2n—1))‘12 m—F 193 M }
+4(P1212 i {)\ 2=y, kz%_i%gn__g)\ L
_ 2n—2.2n—32n—4_ , _ :
+ (2n—2)\ " hgpy — & 19.3 MNP }
4(=1k? . _ . _ : _ _ _
= (P12"21 [_%{(Xl‘l‘ikﬂl)% = (N — vy 1}+'L‘2b‘2{(}‘1+2k#1)% 2+(-)‘1_7'/GI’«1)% *}

+;72k (k) =2 — (N "‘@751“*1)2”-2}]

¢ denoting v/ —1. Hence summing up for all the terms and reducing we have the
whole coefficient equal to

_4702{ (P> =R ) (papy = prPott) + NP (ptapy + p1potty) — Mo py } .
(p® + M = ® ) + 4IN Py

Now
pr=G4*H? pm=AG-+BH
pi1ps=2(FG+DH), w=AF-+BD+CH
M =BG—#*H, \,=CG+BF—#D

and the values of A, B, C, D, H, F, G are determined by the seven equations
Acd,+Bs,c,+Hs,d,—Gs,24Ce,+Dd,—Fs,=1

(n=1, 2, ..., 7); and therefore the above is the value of
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p=T w=1
s E(uM)—E< s u>
pn=1 m=1

expressed in terms of the functions of the u’s.
The evaluation of the corresponding expression for the sum of the third elliptic
integrals presents no difficulty.

SectioN II.
Abelian functions, after W EIERSTRASS.

13. The theory of these functions is detailed in a paper by WEIERSTRASS in
CrELLE’S Journal, t. lii,, but such formule as may be necessary in what follows will

be proved. Let :
P—P)=1y*—(x—a)(x—ay) . .. (x—a,)=0 }

2 —Q2) =2 — (=) @—yyg) . . . (T—0gys)) =0

(1)
and

0=My+Nz . . . . . . . . . . . (2

where M is of the degree p in-x, N of p—1; say

M=o4+Mz~14 ... +Mp—1m+MP} (3).

N= N 1+...4+N_z+N,

Then the equation for the roots « being
M?y? —N%?=0

is of the degree 8p and involves 2p arbitrary constants; thus there must be p rela-
tions among the roots. Let these roots be denoted by @y, @y, . . ., %, &, o v v oy &3
P1> Pos + +~ Py 80 that we may consider the p p’s as given in terms of the «’s and £’s
by the p relations which might be exhibited in a determinantal form. Write

R(z)=P)Q(e)

and let
Azpren P(x)de
B (o .
PTRD a, (x"‘“u)\/R@) ( )
in which p has in succession the values 1, 2, ..., p as also in

P(z)dx
(#—au) 4/ ’R—(?) '
2 Y 2

™M

(5)

A=pré,
—1
V=13 "
A=1 [N
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and in

a)\m . . . . . . . . . (6).

Now the constants in M and N can be so chosen that the roots of the equation
M2y —N%2=0
shall be a,, Uy oo v s O each occurring thrice; for the conditions are that any one,
say oy, shall satisfy the three equations
M2 —N%2=0
Moy M N N =0

MT 2N dM) NU—Z2<CCZZN> —0

where T, U are functions of #. In order that a, may satisfy the first of these
N=0

when £=aq, ; that it may satisfy the second the additional condition is that
M=0

and therefore M will contain z—a, as a factor. Moreover, %* contains x—a, as a
factor and therefore in M?y® we shall have z—a, raised to the third power; and
therefore if we expand N in ascending powers of x—a, the first term is of the order

(w—ay)

dN\? . . .
Hence <%> has A(x—a,) as its first term and so vanishes when x=a,. But this

is the additional condition that z=q, should satisfy the third equation, and being
satisfied it proves that ¢, may occur as a triple root provided

M=0 N=0

when x=a, That is to say, two conditions are necessary for each root, or 2p in all;
but as there are 2p disposable constants these can all be satisfied and so the truth of
the proposition is established. But as N is only of the degree p—1 in «, while it has
to vanish for p values, it must be identically zero; and we choose M=1%?% so that the
equation is M%?=0 which is obvious beforehand.

14. Applying now the general theorem from § 6 we have

Az [ (o Px)de & Pla)de 7 P@)dw
. { J’ (m'_&n) \/W+§ (m—au) \/W j ("”_“u) \/IT‘(Z)

} =constant
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2@ i an integral function of x, and when P@)

L=y (z—a,)\/R(w)
cending powers of « the highest index of # is —3. We have shown that a,, ag, ..., a,
may be regarded as triple roots of the equation for the roots, and thus we may take as
the constant

since is expanded in des-

Heryve)
Hence

el N z)dx é\ z

5 { f P(x)d f P()d

2\ P(x)dx _
o @—0,)/E@ J=o0

= cad =, e

A=1
or
w,4v,+w,=0 . . . . . . . . . . (7).
Now, by WEIERSTRASS’S theory, given values of u,, uy, . . . , 4, imply unique values
of ®,, xy, ..., 2, which are, in fact, the roots of an equation of the p' degree whose
coefficients are single-valued functions of u,, u,, . . ., u,, Kvery symmetrical function
of @, ...,x, can therefore be expressed as a function uj, u,, ..., u, but in
particular
(—x))(ar—2y) . . . (ar—2,)

(t being any of the integers 1, 2, ..., 2p+1) is the perfect square of such a function.
Write v
dx) =(rx—x)(r—un). .. (w—xp) N ()

_Q(ar) =1, (‘r=1, 2, .., P) } (9)

P(a,,)=l,(s=1,2,..., p+1)

then WEIERSTRASS defines
Lall=d¢(a,). . . . . . . . . . (10)

for all values of  included in 1, 2,. .., 2p4+1. It is easy to verify that ), =, ..., ac,,
are the roots of "
r=p Lal?
— =1, . . . . . . . . (11
Effo=rr0) (1)

for there are obviously p roots, and in order that x; may be one of these we must
have

"gp(wr_'%)(“f_xS) e (ar'—mp)__ 1 L e e e (A-)’

,,.=1(0{,,.—(l1)((l¢—‘062) coe (a’—aP)_

By a known theorem of ABEL’s we have

2
2@=0 or 1,
dz
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according as s< or =p—1, the summation being extended over the p roots of
x(x)=0; and therefore

r=p (lrp_l
T =0
1‘51 P (a7)
r=p
—_1>
2 b r)_o if s<p—120.

Thus the left-hand side of (A)

\/l

a,P 1 a,rP—z
—:1{1"(%) (gt ... +m”)P’(a,)+ cen }
=1
all the terms disappearing except the first and so verifying (A) and proving that

*, X, - - . , X, are the roots of (11).
15. Taking now our set of integrals u we have

1 g’ P(axy) oz b

_2 %1 (@a—a)y/R(a) du,

Ozl'\zp ____.____P(m)‘) ) %

%21 (ma—ag)n/ R(xy) o,
I N SCO R (12)

T 22, (ta—a )/ R(m) du,

O__l_}\gp P(zy) __b__x_,\

T (x)\_ap)\/m ouy,

L2 laly?

Multiply these respectively by Pl'(za) P%? ay and add; then, in virtue of

equation (11),
'lMaZLz — J_}\zp P(zy) ?&
Pla) P v/ Rm) ou,

so that if we write

A=p 5, P(z)dx
U=%.§XLA:/<—E{(_$=). N 1)
we have
Lal? oU
P’(a,L) @;(14)

U is obviously a symmetric function of the «’s, and is therefore a function of the u’s,



ABEL’S THEOREM AND ABELIAN FUNCTIONS. 351

16. Again solving the equations (12) regarded as giving 5)- * for different values of

(15),

A, we have®
CVRG)  ha
¢'(@)  (ex— )P (ay)
Therefore
s el Eem e
=1 by (11)
and

R f—l—} Ty

A=1 95/(90,\) Ly— s

where s may-be any of the integers 1, 2, . .., 2p41.
Writing
#=P oal,
EI@:
so that (16") becomes v
¥ { VR@) 1 } al,
A d'(x) Tr—as al,
WEIERSTRASS defines

al,al alsoc__l_,.
—a

alra'lx (J;l (ll
T a,—a,| al, al

Rz al,al,

al, =

A=p

A=l pml T — s DUy

=_>\=1{ (@) (B—a) (@ —as)

(16)

(17)

(16)

}.......(18)

where 7, s must be different from each other, but otherwise may be any of the integers

* Of. Scorr’s ¢ Determinants,’ c. ix., §§ 11, 12.



352 PROFESSOR A. R. FORSYTH ON

1, 2,..., 2p+1. Evidently al,,=al,,, and there are therefore p(2p-+1) functions
al,,; these, together with the 2p+41 functions al,, are the functions of the theory.
(They are, of course, not all independent ; the complete system of relations among
them may be found in the fifth section of the first chapter of the memoir already

quoted.)
Further
Looal, )§P 1 o,
al, du,  Ra_q ap—xy OU
= VA TCN) Lal? 1
s () (a—a)P(a) (a—)
_Vl,alﬁ al,
T Play) alual,
and
oal, Iy .
bu, — () e ¢ 1)
in which
s may have any value 1, 2, ..., p
r ) 35 ]-, 2’ CERRE 2P+1:

but 7, s may not be equal. If rSp, this serves as a verification of (14).
Again, since x, ,, . . . , x, are the roots of (11),

s=p bal? _ (@—a)@—ay) ... (x—x,)_P(®)
s=1 (@ —a,)P’(ay) +1= (@—a)(x—ay) ... (x—a,) P(x)

In this write x=a,,,, (r=1, 2, ..., p+1); then

)
al29+r=—*——¢(lpi:—
s=p lal?
=1—3 —% ___ ... (20
s=1 (a.?_ap+1’)P (“3) ( )
which expresses p+ 1 functions af,,, each in terms of the p functions al, al,, . . . , al,

By (20) and (14) we have

2 418U
aPp=143 ot (20),

[17. A simpler form can be given to this equation by the introduction of a series of
p~+1 new variables provisionally given by
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r=p+1

Wy p
P4t
U= 2 —
=1 () —pyp
=p+1
e =P, Uy r
2T — &
r=1 0/9 ap+f‘
r=p+1
e Y
up-— I

=1 Q= Cy1y
r=1 Y p+1—J

These new u's are not fully determined : as the remaining equation necessary to
determine them assume

: f(up+1: L] “2,;4.1):0.

‘When substitution is made in U for ,, ... ,u, U will be a function of u,,,, .

> Ut
and we shall have

rprl BU =0 bU
rél b’l(fp+ 8 p+7_ 2

o Ou,

S

8=p r=p+1 1

=3 3 8

s=1 r=1 s ap-{-r bu‘s

and from the (p-+1)™ equation giving the new u's

7'=§+1 ,_,b[_ Su

J— O
E P+r— .
r=1 up+1‘

Then by the principle of indeterminate mﬁltip]iers

oU _sgﬂ 1 b—U—)\ of

Opyy s (bs— iy Oy OUp 4

for all the p+1 values of ». Multiply these p+1 equations by w,,y, #,,,, . . . respec-
tively and add ; then
| el §U sz SU  reerl  bf
E; Uper bo,m_sf T ouy =\ 51 u’°+7'%
Let the part of U which is of the order m in the /s (s5p) be denoted by U,,; then
when expressed in terms of the u,,,’s it still remains the term of order m, so that

el U, U,
2 ey, = mUu=%u,

and summing up for the terms of all orders

r=p+1 oU
2 ey
r=1 P b’pr+,. s

MDCCCLX XXITT, 2 7z
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and therefore from the above

r=p+1 o
NS Wptr SZLZ“:O’

=1 p+1r

equivalent to one of the two equations

A=0
or
r=p+1 bf
2=

The latter, taken with the equation

f(u’p+l’ ce ?/’2p+1)=0’

implies that there is a homogeneous relation between the quantities w,,,; this we
may reject. The former leaves f arbitrary or non-existent, and so there would be
only p equations to determine p4-1 quantities, a difficulty, however, obviable at any
time by assigning some new equation to make up the requisite number ; but A=0
simplifies the resulting equations in which it occurs, and therefore this is selected.
Let us assume as our new equation

U_ e + Yp+g +.. .+ ap+1

v
b b—a,y b—ay, b—ay,,,

where v is a quantity which may have a definite value assigned to it at any time, if
desired. Thus we have

§=p 1 oU
o o,
Upir  s=1 Os= by OUs

and therefore

: oU ,
aPr=ldp s (1)

similar in form to (14).
18. Let us obtain the new u’s explicitly from the above equations. Writing

9(-)=(—0)P()

_ .
g(ap+r)i Q) w ) v, Q@) 7

_Q/(ap+,.) (@) ey—ap T g(a,) dp—ayy g O) b—apy, |

we have®

Uppr=

Now make b infinite, so that the assumed equation takes the form

Ups1FUppot o o v FUgpu =0
and

# (f. Scorr’s ¢ Determinants,’ l.c.
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9(( +r) P(“pw)
g(a)  Pla)
o= =Pl
) _,

by’ (b)

so that
—u E { Us Plasyr) Q(“s)} _ P(ap.r) ”
ot s=1 as'—a'p+r Q p+r) P,(as) Q,(_ap+1') )

As a verification of these values we may deduce (14) from (14’) as follows :—

s=p bU r=p+1 bU

2 16—'8163 =dU= 121 bupHSup“
—r=p+1 s=p & lslp_” Ot r=p+1 lp_,_,. oU Sv
o r=1 s=1 bup+o- P/(“S)Q’(a’ﬁ+1‘) s Cpir r=1 Q,(“H') bu’f’“‘ .

Now the quantities Su,, dv are independent ; hence we must have

U_rgt U, 1 U
b =1 P(OLS)Q (a’p+7) Qg=—Qp 1y b’lbp_‘_,
=§ by OU
r=1 Q' (¢4 b’“pw

Taking the second of these, we have

oU 9
b’ll/p.(.r— - 1 +a/l i
1y P
P+
and therefore .
r=p+l lp.“' bU —_ _p+l P+ﬂ + _§+1 ¢(aP+’)
rm1 Q(@pr) SUprr —1 Q'(@p4r) 1 Q' (@)
=1 + 1= 0

by the theorem already quoted in the verification of equation (1 1) For the first
summation we have

el 3 L, 18U

re1 P(a5) Q(pir) Cs—0pyr OUy s

_ L[ _§+1 Ly 1 n =pxl ] Lal’,, }
P(as) =1 Q(@par) G—ttprr  r=1 Q(Cprn) (A=)
2z2
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The first term inside the bracket is the expansion in partial fractions of

__P(a)
T Qla)

and is therefore zero since sSp; the second is
1«:§+1{ ¢)(ap+,)_ 1 }

Q(@ps) ts—pes

=""""=—al? Dby definition

so that the equation with which we began leads to

oU ls

IR Sy )
ou— " Py

that is, to equation (14).]

19. Now let
1 & Px)
V—zz,( \/R(x)d 1 (13)
e Pe o |
w=1 3" i ]

so that V stands to the ¢’s and W to the w’s in exactly the same relation as U to

the u’s.
Applying now the theorem in § 6 we have

My+N
U+V+W:—Cw5¥%l (y+£>

R EVAC M

The n™ term in this series gives

1 N \2z—1 ~2
st ()

: C: {1\ 2n—l—{- higher powers of }

T on—1 ; "

so that nothing is contributed except by the first term, and we have
U4+V4W==N, . . . . . . . . . (22
The 2p quantities N}, N,, ..., N, M;, ..., M, are determined by the equation

Ny~ p Nywr2 . N My ly+ .+ My=—ary
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which is satisfied by the 2p values of @, viz.: @, @, ..., =, &, &, ..
therefore , '
- - -9 —
Nil o a2, ooy |+ | 2Py 2%, ...,y |=0.
- - ‘ -2
L T2 Xy oy Yy LYo Xof 2 o5 Yo
-1, -9 -2
TS X T,y Y, LY s XS ™% o o5 Yy
-1 —9 -2
flp ll: flp Goooos i flp"}p flp Loooosm
-1 -2 -9
&7, 67, EMor &0 s,

‘)

3

357

and

20. As an example of (22) and (28) consider the elliptic functions, 7.e., the case in

which p=1; then
N,

zy;-l—
o

xy -y ;:O
&

(dropping suffixes), or
| Ny (&P —y*8) = (€ —a)ym(zn+y0)

that is
N {(x—a,)(§—a))— (o =ay)(ay—a)} = —yn(en+yL) ;
and
u—‘l‘r dz
g
z Py
—1[f Ve ds
U 2.(f/1 \/[U bt (tg.,’(} — a3
Let
o — Q.
w=ay+ (ay—a,)t% kz:a;—ai ;
then
1 r dt
U= ’
Ay —adon/ 1= 1= 12
U= %% r *dt
T ag—adon/T—2 1 =1

Let s, ¢, d denote elliptic functions of ur/az—a,

8,0,D ., . o ag—ay
o ” sn{(u+v)vaz—a,} e, v—-snwx/&s—-—a;
Then |
P 2
ay—t

and therefore
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r—m=(0y—a,)s
x—ay=—(ty—a,)c*
x—g=—(ay—a,)d?

and so

N, — (ay—,)?n/ ag—a, {5¢dS? + SCDs?}
' (“2 — ) (g —a,)(1—A$"5)

sSo'

_Gg—

“3

With the ordinary notation for the second elliptic integral we have

E(u«/ag—a]‘)r_-u\/a:,;—al—

_U__
. Vi —a,
and since

u+v4w=0
this gives |

\/a = —(U—I— V4+W)=E(uv'ag—a,))+E(vv/a;—a) +E(wy/ az—a,
=ksSo
= N
TV ay—ay

U+V4+W=—N,

that 1s

agreeing with the case when p=1 of (22).
21. The evaluation of N, in terms of the functions can be obtained in the general
case as follows.

Since @y, #g, .. ., @ &, o o5 &y Py Doy - -+ 5 P, are the roots of
M2y —N%2=0
we have
M%) —N%=(x—x)(x—1x,) .. . (x—Pp,).

In this write x=a,, where m21§p; then

— NQ(,) = (=) (a3 - - - (ta—p,)
that is
LiiN(a,) }2=1,al X (w)al,*(v)al,X(u4-v)
and therefore
1am + Nzamp—z'l' .+ Np= + lmalm('u/) alm(v)alm(u -+ ?J) .
Hence

m=p

! m » . l” lam"‘l-l- PR +Np.
151 () al,(w)al,(v)al,(utv)= :l:m% )
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But a,, ay, . . . a, are the p roots of
P()=0
and therefore as before
m§P a’;npm =1 and 2 am e O(S> 1< )
m=1 P,( m) m=1 P,( m) P

and so

ner {PGﬂlm(u)al () aln(ut v)} — 4N,

m=1

and therefore

U4+V4+W=-N,
_q:mgp{l)l( )alm(’u/)al ( )C¢Zm<u+/v)}-
m=1
On the expansion of each side in terms of the u’s and v’s as is done below, it is at
once seen that the lower sign is the correct one; and therefore

U+V4W="s {P,('“ )alm(u)alm(v)al,,,(u—l—v)}

This may be called the addition theorem for the integral-function; by putting
p=1 and referring to the example worked out in the last section, it is at once seen
to be the addition theorem for elliptic integrals of the second order.

22. In the expansion of the two sides in terms of w’s and ¢’s the first term is
sufficient to indicate the correct sign in the above; but it is not uninteresting to see
the agreement for terms of a higher order, and the expansion is carried on as far as
the order seven in the magnitudes u.

Proceeding therefore to form the expansion of U in terms of the u’s, write, with
‘W EIERSTRASS,

P'(a,)
— (—a)=s" (24)
so that
(a' )olac, = erds,
and
_f}'}f.",'-, — 20_Z§'_
Ty — Oy S,
Let
‘ L, 1
a!r, " P,(a/r) ==y, (2 5)
8o that
b b
Do) " T D)
then
Lp === (ar - am) ( 1— Ay, mer) .
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Substituting we have

In$® 1 wsu® 1227 (aw) [ Tusu® 3P ()
Pn)=— P/(a, )P( )+{P’(a )} 9! {P(am)} 3 T

m m V2 m m 2 Q”(am)

and therefore

busi® P (@)
P(xm)’__s / ! (P'(a,)}? 2! t
Q(mm).— " /\/ o ) Si® , e
1 +P,(CLM)Q (am) -

=su(1—A,8, —Bus,) say, . . . . . . . . (26)

correct to the fifth order. Moreover

. __—m'—'p 1 (T/m)
=S /gy

m=p

2 L S0l S,(1 —-Amsmz—Bmsﬁ)

m= ]P/( m)
or
m==p l ‘s, 3 A B
—__ e I L P Nt P | . . . . . . . 2
U 2 1)’(am)l: 3 5 Sm 7 Sm } ( )7)

correct to the seventh order. TFurther

WI) dz,

Q) @—a,

Q (wm) L=

2du,,=

o

and
dx,

Ly == Clyy,

- 2a’r, msrdsr (] + ay, m3r2 + a’r' mzsr‘L)
which with the help of (26) gives
dum = dsm( 1— -A-msm2 - Bmsmq‘) - 59 Ay, msrgdsr(l + Ay, msrz + a, mgsr&) (]— - Arsr2 - Br3r4)
=1

where 3 denotes that » may receive all values between 1 and p except m. Thus

" Bm 1':,,) 373 Qp = -A-r
zam=sm—§sm3——5—sm5—2ar,m{~—|——i~5———s,5}. oo (29)

correct to the fifth order ; and as s, is of the order w this expansion will be sufficient
for the expansion of U in (27) accurately to the seventh order. The equation (28)
holds for m=1, 2, .. ., p.
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Inverting it in order to obtain s in terms of w’s we find that to the fifth order
szu”l
A r=p u,3
‘lh 3 U “Q"
+g e’ I any
5Am2 + gBm dr 1n(5ar m+ 24, )

+—_——]TZ—_” m5+ mum2 Eln a, mur + 2' 15 5+ Em Ay, mur 27 Qg ru (29)
) r=1 s=1

where 127: implies summation for all values of = from 1 to p except m, and ;ﬁ for all

r=1 s=1

values of s from 1 to p except . Substituting this in (27) we obtain

m=p ] w3 2A r=p u, 2B »
U= m_ | U i (/T5 w2 ¥ m ;A ﬂ
U mgl P,(azm)[: 3 + 15 U + " i: a‘rm +< 35 + >
uAm iy ur um
+~-§_ Um 2”‘ Qp, 3 + Em &, m(sa”' ‘”+2A )
U2 TP Hinl
+w 2’" a, mur 2’ Qg 1 Us + 9 E”” Ema’r ks, mui’ ] e e (30)
r=1 g=1

correct to the seventh order, In the lést term inside the bracket r and s may take
the same value ; the double summation is in fact

P=p 3 2
27"’ Ay, wly” | .
r=1

Again
a3 {n)= ) Bla)

=8 (1—ay, w1 =25, . . . (1—a, .8,%)

(the term involving s, not occurring in the brackets)

P=p iy I=p
zsmg[]- — Zm Ay, Sy + 3 Ry, iy, mér St :]

=1 7y t=1
nt=p . . .
where 3 implies summation for all values 1, 2, ..., p of » and ¢ except m, and »
7 t=1
and ¢ must not have the same values. Extracting the square root we find

=p r=p yt=p
b 9,9 5
al,(w )-—-Sm[l —1 Em Ay mS =% Zma, 08 4 Zma, 0, ms,ﬂ.sﬂ .. (31).
d

r=1 7 6=1

Let o, refer to alm(v); S, to al,(u+v), so that to the first order
MDCOCLX XXTII. 3 A
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al,(v)=o0,

al,(u+4v)=8,

and regard o, and S, as being of the same order as s,. Then accurately to the seventh
order

al,(w)al,(v)al,(u4v)
. Smo-msm}y]- - % 72:"’:' a‘)’, 71&(87‘2+ 0-7'2 + Srg) Y 2’"' a; 2 ( '4!+ 0-74+ S:'LL)
L r=1

+4 ,nla,r s, ,,,(.S,. h +o- 20 2+S S 2)+Zi_ 2

7y

~ & o

zib a,. mat,m(bf 0'¢2/+0'7'2N 24_b 2‘5 )] (32)

where the summation in the last term in (32) is exactly as in the last term in (30).
To express this in terms of u and v we must substitute the value of s in terms of u’s as
given by (29) and for o and S respectively corresponding values of v and u4wv. Let

and the summation taken for

these values be inserted, both sides multiplied by - Dl ( ]

the values m=1 to m=p and compare this expression, which is

"El P’( )alm(u)alm(v)alm(u—kv) N 123

with the value of U4+V4W.
Firstly, they agree in the third order of quantities; for

3 3 3
U, + U + Wy, :
- 3 =UnVUn (um + vm)
since
UVt w,=0.

Secondly, consider in each the terms of the order five. That in U+V4W which

Zﬂb o . . .
has = <A, for its coefficient is
r (a/m)

1 [(Um'l_vm) _'um —Vn ]

%’L mvm(um + 2“»/zgvm+ Z’Ll,,,ﬂ)m + Um‘ )
=2y

-3

, WV (U V) (20,7 F100,)
while in (B) it is
S+ 0,) {1,202 (Ua0.)}

and these are obviously equal.

The term in U4 V-+W which has

1 lnz li' 1

3 (amj 1 ) ‘(l.rr_‘_;b‘m 1.6, 31)/( )

"
Ay OF = 51"(0& )a'm, r
v
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for coefficient is
(vmv0)? (w4 'v;.)?’ — (U4, (A v,) =1, 0,3+ d,?u,,? —v,203 4,8
while in (B) it is
(1m0 V10,3 — (1 0,) 010> = 300 (U V) {12 0.2 (0, +0,) 7}

+ (Un V) 10— (U 00,0, 4§00, 0, (14 0,) {20, 0,74 (w0, 0,,)}
00 F0,) = 0,0, (V)

Adding the latter up in columns, it is
3 (Unt Vn)* = 10T (U 00) *— 007]+ But0t0,0, (0,4 0,) for first
— et ,) =] =0, (1,4 0,)? =0, ] — BUp 01,0, (U +v,) for second
— 30,0, (U 0,) (U F0,) - 10,0, 0,0, (U 0,) + 81,0, (10,4 0,) (U ,)?

— 3,0, ,0,(u-+2,) for third

= —u,, 2,3 —1,20,5 +1,.°10,2+ 0,30, 4 (U 02 *(, +0,) 3 — (00,40, (0 +v,,) 3

and therefore, to the order five, (B) and U+ V+4+W are equal.
Thirdly, consider in the order seven the term in U+ V+W which has

l‘?n 2 B”l A‘WL
ool )

(um + vm) T— um7 - /Um7
= 7umvm(um + /Um) [um4 + vm‘t + 3“m2'vm2 + 21, m(um2 + vmz)]

for coefficient ; 1t is

while in B the term of order seven which is free from all the a’s and is multiplied by

In
—"— ig

P(a)
5A,° +3B

"l

0 )[umvm (Wnt0,) {2 00 (W0, |
L,
D' () 9

]-)’i':' ) <-‘+713 >umvm(um+vm)[um F v, 4 81,20, 2+ 21,0, (w2 v47) |

) {0521+ 0) 0 (U 00) P10 0,0} ]

and again these terms are equal.

I have verified the exact agreement of the two expressions for one or two others
(but not for all, owing to the labour involved) of the terms of the seventh order; and
this exact agreement leads us to infer the truth of the equation

3 A 2



364 PROFESSOR A. R. FORSYTH ON

U4+V4+W='3 alu(wal,(v)al(utv) . . . . . (33)

m=1 P’( )

a direct proof of which has already been obtained.
23. Combining (22) and (33) we have

U4 V+W=—=N,=5 Pf( Sl (u)al (v)al (u-+o).
s=1 .
Therefore
j [ oN, N,
S St Sut =2 oo, s i
But by (7)

Suu v, +dw,=0. . . . . . . . . . (7)

so that substituting for the 8w’s and remembering that the Su’s and &v's are

independent we have

oUW __ b_N_ll
Bum bwm Oy,
e e e (34).
W _aW_ N, | (24
o, oW, bva
By the first of these
2 2 . 2
U PW o BN BN

— Uy — oUW, —= — U, =
ouudu, | Sw,dw, " SuUpdit, L SUydu,

and therefore by (7')
58U W _ &N, 7
duduy, | Swpdi, S,
W N,
Swudw,  Suy,dv,

_—
Similarly BV W PN

bu,ov, | owndw,  Sv,ém,
PW N,
dw,bw,  duudu,

from which we see that N satisfies the series of differential equations

&N, 0N,
Sudv, bvmbun

of which there are 1p(p—1) 1n all.
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24. Returning now to (34) and using (14) we have

dal (u-!-'v)

,( et —al )} = - )al(v){al( ) tal,(ut )b“l""‘} (36)

bals(u + )

byl ) =k} =% gsal ) {al 00 a a0} (31)

and from these by subtraction and noticing that

oal(u+v)  daly(u+wv)

Sty OU,
we have
By et )=t} =% el {5 ) 50 o).
Now if s be different from m
bals(u) o

Sun = P(ay) al(w)als .(v)

but this no longer holds when s,m are the same since al,, ,, is not a recognised function.

oal,(u)

We proceed as follows to obtain o

:—ditferentiate both sides of (20) with respect
to u, so that

p+r(u)balp+, (1) —3 7:{ I, al(u) dal, (u)} _lw aly(w) dalu(v)

Oty el | Ge— Qi () OUy Up—0pyr P'(ay) Oty

where Sn implies that the value s=m is not to be included in the summation. The

s=1

equation quoted above (holding for all values of s from 1 to 2p-41) when substituted
in the last gives, on division by Pj%}alm(u),

U

1 oal (2
L ,,+,(u)alp+r(u)+2 { mal (u)alg,m(u)} S S O

G — gy Ol

and (38) may now be written in the form

al,X(u)~al,*(v) _-Em —;;—~ aly(u4v){al,(w)al,(v)al, (v) —al(v)al,(u)aly.(u)}
()= el (u-+o)
._azm(u+v)§,g (al % (©)atly (0)tl(12) — ol ()l (1)l (v)

—(@n=pr)alu(utv){alu()aly, (v)aly,p(v) — Al () iy (w)tln,pr ()} (39).
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This equation holds for the values 1, 2, ..., p of m and these p equations determine
the p functions al,(u-+v) for values 1, ..., p of m in terms of functions of w and v.
Moreover, 1 is any one of the numbers 1, 2,..., p+1, so that these equations can
have a large variety of forms. We may thus consider the functions alu(u—4v)(msp) as
known ; the p+1 functions al,,(u+v) are given in terms of them and therefore
ultimately in terms of functions of « and v by the equation ’

al’,(utv)=1— 2 { als (u—l—v)}

ls
(= ap1r) P’ (@)
Treating (36) in the same manner as (38) it will yield p equations involving the
double-suffix functions of u4v; this system, together with the relations between

them (to which reference has already been made), will furnish the complete solution
of the addition theorem for these functions.

Abelian functions of order 2.

25. Consider the particular case of the preceding for which p=2. We now have

@ x-—agd lrzvc aqdwl
r

Lﬂ/ﬁ@‘) e )L VRE)
1 or—a Y2 X—a h
ug——-%Ll \/E(%) doc+1L2 \/R@lc) dwjl

b(@)=(1—,)(@—2,).

Write '
PTEEY L r=1,2,3, 4, 5
vy b, (r=1,2,38,4,5). . . . . . . . ().
Also ,
l, ly=— , —Q(ay)
b b= —Qle), —Q(e) respectively . . . . . . (2).
L, by l;="P(ay), P(a,), P(as) V ’
Then :
LalP=d¢(a)=ab, . . . . . . . . . . (3)
for s=1, 2, 3, 4, 5; and
1

al, ;=

(1"1 —-Z‘?)\/l / [\/a'ra!sbbb""‘ \/brbga&&] s e e e e (4)
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the suffixes being added to the a’s and b’s under the radical sign so as to have 1, 2, 8,
4, 5 for the complete system under any one root-sign. Then

b
(z 1_‘9‘”)\/1 Lol

alal, = b/ a,a8/0b—a:/b,bbaa]

and therefore
(a,—ag)alal, A (a,—a)alal, +(a,—a)alal, =0 . . . . . (5)
Again

l,al,ctl,.,s 2) \/l [a,4/a,bbbb—Db,\/b,aaaa]

and therefore
(ay—ap)lalal,  + (a,—a)Lal,al, A (a,—a)lalal, ;=0 . . . . (6)

in which p, ¢, 7, s, ¢ may be any of the numbers 1, 2, 3, 4, 5.
26. ‘Writing — P

,( =% (s=1, 2), equation (39) of the last example gives

al;*(u) —al*(v) = agaly(utv) {al, (v)aly(w)al,, o(v) —aly(w)aly(v)aly,o(u)} _
+ a‘ll(u'l',v)[(al —ag) {al(v)aly(v)al, yu—al(u)aly(v)al, o(v)}

) —ay

=% fal(o)aly(u)a, )= ()l (o)l )} |

+oy

al(u) —al2(v)=a,al; (u4v) {al, (w)aly(v)aly, o(v) —aly (v)aly(v)aly, o (u) }
+aly(u+ v)[(ag — a) {aly(v)als(u)aly o(uv) — aly(w)aly(v)al, 4(v)}

o ZZ :ZZ {aly(w)aly(v)al, o(u)—al (v)aly(u)al, o(v) }

| SO——|

two equations which determine al)(u+4v), aly(u+v).
- Assuming these known we have

al(utv)=1— { al 2u4v) —l— al Au+v) }
al(u4v)=1— {[L al*(u4v)+ alz"“(u+v) } ,
alM(utv)=1— «{d (u+v)+ al 2(u—l—v)}

The equation (36) applied to this case is when m=1
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al P (w4v) —al(u)=ayaly(v) {aly (u-+v)alyw)aly o (u+v) +aly(utv)aly(w)aly,o(v) §
—(ay —cc3)cd‘1(@) {aly(w)aly(w4-v)al, s(u4v)+al, (utv)als(w)al, 5(u)}

) —

— ag%_zg al,(v) {aly(w)aly(u+v)al, (u+v)+al,(ut-v)aly(u)al, o(v)}

and when m=2 it is

al(u4-v) —alX(w) =a,al,(v) {al,(v)aly(u+v)al, o (u+v) 4 al, (u+v)aly(u)al, o(w) }
— (ay—az)aly(v) {aly(u)aly(u—+v)aly s (u+v) +al2(1¢+ v)alg(u)aly, (1)}
ay—a, .

2 aly(v) {aly(w)al, (w+v)al, o(u4v)+ aly(u+v)al(w)al, o(u)}.

6 —ag

A particular case of (5) is
(ay—ag)alsaly o+ (ay—ag)al aly o+ (ag—ay)alal) 3=0.

These three equations will suffice to determine al, y(u—+v), aly s(u—+v), als (u+72);
after which the other functions may be successively obtained from the equations

(%—%)Zﬂlﬂlheﬁ:(%_%)Z3alsal1,3+(%"_“3)l2alzal1,2 Coee L (8)

(@y—ag)alaly ;= (a,—a))alyal, A (@y—ag)alaly . . . . . (5)
(ay—as)alyaly y=(a,—ay)alsaly A+ (ag—ag)alalyy . . . . . (5)
(ay—ay)lalyaly s=(ay—as)laloly + (as—a)balyalyy . . . . (6)
(ay—ag)alal, ;= (a,—ay)alal, s+ (a,—a)alzal,, . . . . . (5)
(ag—az)al,aly s=(ay—a,)alsaly, ;A (a,—a)alal,s . . . . . (5)
(@g—ag)alsaly, = (a,—oag)alaly s+ (ag—az)alals ;. . . . . (5))

the figure at the end of each line denoting from which of the equations (5) and (6) the
particular line has been derived.

This case has been added and all the necessary equations have been written down
as a justification of the statement made at the end of § 24.



